Algebra
Applied Mathematics
Cakulus and Analysis
Discrete Mathematics
Foundations of Mathematics
Geometry
History and Terminology
Number Theory
Probability and Statistics
Recreational Mathematics
Topology

Alphabetical Inde
Interactive Entries
Random Entry
New in MathWorld
MathWorld Classroom
About MathWord
Contribute to MathWorld Send a Message to the Team
MathWorld Book

12,976 entries
Last updated: Sun Jan 172010
Created, developed, and nurtured by Eric Weisstein at Wolfram Research

Geometry > Coordinate Geometry >
Interactive Entries > Interactive Demonstrations >

Cylindrical Coordinates

 Notebook

Cylindrical coordinates are a generalization of two-dimensional polar coordinates to three dimensions by superposing a height (Σ) axis. Unfortunately, there are a number of different notations used for the other two coordinates. Either r or ρ is used to refer to the radial coordinate and either ϕ or 6 to the azimuthal coordinates. Arfken (1985), for instance, uses (ρ, ϕ, z), while Beyer (1987) uses (r, θ, z). In this work, the notation (r, θ, z) is used.

The following table summarizes notational conventions used by a number of authors.
(radial, azimuthal, vertical) reference

(r, θ, z)	this work, Beyer (1987, p. 212)
$(\mathrm{Rr}$, Ttheta, Zz$)$	SetCoordinates[Cylindrical] in the Mathematica package VectorAnalysis $)$
(ρ, ϕ, z)	Arfken (1985, p. 95)
(r, ψ, z)	Moon and Spencer (1988, p. 12)
$\left(r^{\prime}, \varphi, z\right)$	Korn and Korn (1968, p. 60)
$\left(\xi_{1}, \xi_{2}, \xi_{3}\right)$	Morse and Feshbach (1953)

In terms of the Cartesian coordinates (x, y, z),

$$
\begin{align*}
& r=\sqrt{x^{2}+y^{2}} \tag{1}\\
& 6=\tan ^{-1}\left(\frac{y}{x}\right) \\
& z=z .
\end{align*}
$$

where $r \in[0, \infty), \theta \in[0,2 \pi), z \in(-\infty, \infty)$, and the inverse tangent must be suitably defined to take the correct quadrant of $(x, y)]$ into account.

In terms of x, y, and z

$$
\begin{align*}
& x=r \cos 6 \tag{4}\\
& y=r \sin \theta \\
& z=z
\end{align*}
$$

Note that Morse and Feshbach (1953) define the cylindrical coordinates by

$$
\begin{align*}
& x=\xi_{1} \xi_{2} \\
& y=\xi_{1} \sqrt{1-\xi_{2}^{2}} \tag{8}\\
& z=\xi_{3} .
\end{align*}
$$

$=r$ and $\xi_{2}=\cos \theta$
where $\xi_{1}=r$ and $\xi_{2}=\cos 6$.
The metric elements of the cylindrical coordinates are
$g_{r r}=1$
$g_{\theta e}=r^{2}$
$g_{z z}=1$
so the scale factors are

$$
\begin{align*}
& g_{r}=1 \tag{13}\\
& g_{\theta}=r \tag{14}\\
& g_{z}=1 \tag{15}
\end{align*}
$$

The line element is

$$
\begin{equation*}
d \mathbf{s}=d r \hat{\mathbf{r}}+r d \theta \hat{\boldsymbol{\theta}}+d z \hat{\mathbf{z}}, \tag{16}
\end{equation*}
$$

and the volume element is

$$
\begin{equation*}
d V=r d r d \theta d z \tag{17}
\end{equation*}
$$

Other Wolfram Web Resources

$$
\begin{equation*}
\left|\frac{\partial(x, y, z)}{\partial(r, \theta, z)}\right|=r . \tag{18}
\end{equation*}
$$

A Cartesian vector is given in cylindrical coordinates by

$$
\mathbf{r}=\left[\begin{array}{c}
r \cos \theta \tag{19}\\
r \sin \theta \\
z
\end{array}\right]
$$

To find the unit vectors,
$\hat{\mathbf{r}} \equiv \frac{\frac{d \mathbf{r}}{d r}}{\left|\frac{d \mathbf{r}}{d r}\right|}=\left[\begin{array}{c}\cos \theta \\ \sin \theta \\ 0\end{array}\right]$
(20)
$\hat{\theta} \equiv \frac{\frac{d \mathbf{r}}{d \theta}}{\left|\frac{d \mathbf{r}}{d \theta}\right|}=\left[\begin{array}{c}-\sin \theta \\ \cos \theta \\ 0\end{array}\right.$
$\hat{\mathbf{z}} \equiv \frac{\frac{d \mathbf{r}}{d z}}{\left|\frac{d \mathbf{r}}{d z}\right|}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$.
(21)
(22)

Derivatives of unit vectors with respect to the coordinates are

$$
\begin{aligned}
& \frac{\partial \hat{\mathbf{r}}}{\partial r}=\mathbf{0} \\
& \frac{\partial \hat{\mathbf{r}}}{\partial \theta}=\hat{\boldsymbol{\theta}} \\
& \frac{\partial \hat{\mathbf{r}}}{\partial z}=\mathbf{0}
\end{aligned}
$$

$$
\frac{\partial \hat{\theta}}{\partial r}=\mathbf{0}
$$

$$
\frac{\partial \hat{\theta}}{\partial \theta}=-\hat{\mathbf{r}}
$$

$$
\frac{\partial \hat{\theta}}{\partial z}=0
$$

$$
\frac{\partial \hat{\mathbf{z}}}{\partial r}=\mathbf{0}
$$

$$
\frac{\partial \hat{\mathbf{z}}}{\partial \theta}=0
$$

(30)

$$
\begin{equation*}
\frac{\partial \hat{\mathbf{z}}}{\partial z}=\mathbf{0} . \tag{31}
\end{equation*}
$$

The gradient operator in cylindrical coordinates is given by

$$
\nabla \equiv \hat{\mathbf{r}} \frac{\partial}{\partial r}+\hat{\boldsymbol{\theta}} \frac{1}{r} \frac{\partial}{\partial \theta}+\hat{\mathbf{z}} \frac{\partial}{\partial z},
$$

(32)
so the gradient components become
$\nabla_{r} \hat{\mathbf{r}}=\mathbf{0}$
$\nabla_{\theta} \hat{\mathbf{r}}=\frac{1}{r} \hat{\boldsymbol{\theta}}$ (34)
$\nabla_{z} \hat{\mathbf{r}}=\mathbf{0}$ (35)
$\nabla, \hat{\theta}=0$
$\nabla_{e} \hat{\boldsymbol{\theta}}=-\frac{1}{r} \hat{\mathbf{r}}$
$\nabla, \hat{\boldsymbol{\theta}}=\mathbf{0}$
(
$\nabla_{x} \hat{\mathbf{z}}=0$ (39)
$\nabla_{\theta} \hat{\mathbf{z}}=\mathbf{0}$ (40)
$\nabla_{z} \hat{\mathbf{z}}=\mathbf{0}$.
The Christoffel symbols of the second kind in the definition of Misner et al. (1973, p. 209) are given by
$\Gamma^{r}=\left[\begin{array}{ccc}0 & 0 & 0 \\ 0 & -\frac{1}{r} & 0 \\ 0 & 0 & 0\end{array}\right]$
(42)
$\begin{aligned} \Gamma^{3} & =\left[\begin{array}{lll}0 & \frac{1}{r} & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right] \\ \Gamma^{2} & =\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right] .\end{aligned}$
(43)
(44)

The Christoffel symbols of the second kind in the definition of Arfken (1985) are given by

$$
\Gamma^{r}=\left[\begin{array}{ccc}
0 & 0 & 0 \tag{45}\\
0 & -r & 0 \\
0 & 0 & 0
\end{array}\right]
$$

$$
\begin{aligned}
\Gamma^{*} & =\left[\begin{array}{lll}
0 & \frac{1}{r} & 0 \\
\frac{1}{r} & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \\
\Gamma^{z} & =\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

(Walton 1967; Arfken 1985, p. 164, Ex. 3.8.10; Moon and Spencer 1988, p. 12a)
The covariant derivatives are then given by

$$
\begin{equation*}
A_{j, k}=\frac{1}{g^{k k}} \frac{\partial A_{j}}{\partial x_{k}}-\Gamma_{j k}^{i} A_{i *} \tag{48}
\end{equation*}
$$

are

$$
A_{r r}=\frac{\partial A_{r}}{\partial r}
$$

(49)

$$
A_{r ; s}=\frac{1}{r} \frac{\partial A_{r}}{\partial \theta}-\frac{A_{\theta}}{r}
$$

$$
A_{r: z}=\frac{\partial A_{r}}{\partial z}
$$

$$
A_{\theta r}=\frac{\partial A_{\theta}}{\partial r}
$$

$$
A_{e, s}=\frac{1}{r} \frac{\partial A_{e}}{\partial \theta}+\frac{A_{r}}{r}
$$

$$
A_{\theta, z}=\frac{\partial A_{\theta}}{\partial z}
$$

$$
A_{z r}=\frac{\partial A_{z}}{\partial r}
$$

$$
\begin{equation*}
A_{z: s}=\frac{1}{r} \frac{\partial A_{z}}{\partial \theta} \tag{56}
\end{equation*}
$$

$$
\begin{equation*}
A_{z z z}=\frac{\partial A_{z}}{\partial z} . \tag{57}
\end{equation*}
$$

Cross products of the coordinate axes are

$$
\begin{align*}
& \begin{array}{l}
\hat{\mathbf{r}} \times \hat{\mathbf{z}}=-\hat{\boldsymbol{\theta}} \\
\hat{\boldsymbol{\theta}} \times \hat{\mathbf{z}}=\hat{\mathbf{r}} \\
\hat{\mathbf{r}} \times \hat{\boldsymbol{\theta}}=\hat{\mathbf{z}}
\end{array} \\
& \text { The commutation coefficients are given by } \\
& c_{\alpha \beta}^{\mu} \vec{e}_{\mu}=\left[\vec{e}_{\alpha}, \vec{e}_{\beta}\right]=\nabla_{\alpha} \vec{e}_{\beta}-\nabla_{\beta} \vec{e}_{\alpha}
\end{align*}
$$

But

$$
[\hat{\mathbf{r}}, \hat{\mathbf{r}}]=[\hat{\boldsymbol{\theta}}, \hat{\boldsymbol{\theta}}]=[\hat{\boldsymbol{\phi}}, \hat{\boldsymbol{\phi}}]=\mathbf{0}
$$(62)

so $c_{r r}^{a}=c_{e \theta}^{\alpha}=c_{\phi \phi}^{\alpha}=0$, where $\alpha=r, \theta, \phi$. Also
$[\hat{\mathbf{r}}, \hat{\boldsymbol{\theta}}]=-[\hat{\boldsymbol{\theta}}, \hat{\mathbf{r}}]=\nabla_{r}, \hat{\boldsymbol{\theta}}-\nabla_{\theta} \hat{\mathbf{r}}=0-\frac{1}{r} \hat{\boldsymbol{\theta}}=-\frac{1}{r} \hat{\boldsymbol{\theta}}$.
so $c_{r \theta}^{\theta}=-c_{\theta r}^{\theta}=-\frac{1}{r}, c_{r \theta}=c_{r \theta}^{\phi}=0$. Finally,
$[\hat{\mathbf{r}}, \hat{\phi}]=[\hat{\boldsymbol{\theta}}, \hat{\phi}]=0$.
(64)

Summarizing,
$c^{\prime}=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$
$c^{B}=\left[\begin{array}{ccc}0 & -\frac{1}{r} & 0 \\ \frac{1}{r} & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$
$c^{\omega}=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$.

Time derivatives of the vector are
$\dot{\mathbf{r}}=\left[\begin{array}{c}\cos \theta \dot{r}-r \sin \theta \dot{\theta} \\ \sin \theta \dot{r}+r \cos \theta \dot{\theta} \\ \dot{z}\end{array}\right]=\dot{r} \hat{\mathbf{r}}+r \dot{\theta} \hat{\theta}+\dot{z} \tilde{\mathbf{z}}$
$\mathbf{r}=\left[\begin{array}{c}-\sin \theta \dot{r} \dot{\theta}+\cos \theta \ddot{r}-\sin \theta \dot{r} \dot{\theta}-r \cos \theta \dot{\theta}^{2}-r \sin \theta \ddot{\theta} \\ \cos \theta \dot{r} \dot{\theta}+\sin \theta \ddot{r}+\cos \theta \dot{r} \dot{\theta}-r \sin \theta \dot{\theta}^{2}+r \cos \theta \ddot{\theta} \\ \ddot{z}\end{array}\right]$

$$
\begin{align*}
& =\left[\begin{array}{c}
-2 \sin \theta \dot{r} \dot{\theta}+\cos \theta \ddot{r}-r \cos \theta \dot{\theta}^{2}-r \sin \theta \ddot{\theta} \\
2 \cos \theta \dot{r} \dot{\theta}+\sin \theta \ddot{r}-r \sin \theta \dot{\theta}^{2}+r \cos \theta \ddot{\theta} \\
z
\end{array}\right] \tag{71}\\
& =\left(\vec{r}-r \dot{\theta}^{2}\right) \hat{\mathbf{r}}+(2 \dot{r} \dot{\theta}+r \ddot{\theta}) \hat{\boldsymbol{\theta}}+\ddot{z} \hat{\mathbf{z}} . \tag{72}
\end{align*}
$$

(70)

Speed is given by

$$
\begin{aligned}
v & \equiv|\dot{\mathbf{r}}| \\
& =\sqrt{\dot{r}^{2}+r^{2} \dot{\theta}^{2}+\dot{z}^{2}} .
\end{aligned}
$$

(73)
(74)

Time derivatives of the unit vectors are

$$
\dot{\mathbf{r}}=\left[\begin{array}{c}
-\sin \theta \dot{\theta} \\
\cos \theta \dot{\theta} \\
0
\end{array}\right]
$$

$$
=\dot{\theta} \hat{\boldsymbol{\theta}}
$$

$\dot{\hat{\boldsymbol{\theta}}}=\left[\begin{array}{c}-\cos \theta \dot{\theta} \\ -\sin \theta \dot{\theta} \\ 0\end{array}\right]$

$$
=-\dot{\theta} \hat{\mathbf{r}}
$$

$=0$.
The convective derivative is

$$
\begin{align*}
\frac{D \dot{\mathbf{r}}}{D t} & \equiv\left(\frac{\partial}{\partial t}+\dot{\mathbf{r}} \cdot \nabla\right) \dot{\mathbf{r}} \\
& =\frac{\partial \dot{\mathbf{r}}}{\partial t}+\dot{\mathbf{r}} \cdot \nabla \dot{\mathbf{r}} . \tag{82}
\end{align*}
$$

(81)

To rewrite this, use the identity
$\nabla(\mathbf{A} \cdot \mathbf{B})=\mathbf{A} \times(\nabla \times \mathbf{B})+\mathbf{B} \times(\nabla \times \mathbf{A})+(\mathbf{A} \cdot \nabla) \mathbf{B}+(\mathbf{B} \cdot \nabla) \mathbf{A}$
and set $\mathbf{A}=\mathbf{B}$, to obtain
$\nabla(\mathbf{A} \cdot \mathbf{A})=2 \mathbf{A} \times(\nabla \times \mathbf{A})+2(\mathbf{A} \cdot \nabla) \mathbf{A}$,
(84)
so

$$
(\mathbf{A} \cdot \nabla) \mathbf{A}=\nabla\left(\frac{1}{2} \mathbf{A}^{2}\right)-\mathbf{A} \times(\nabla \times \mathbf{A}) .
$$

(85)

Then

$$
\begin{aligned}
\frac{D \dot{\mathbf{r}}}{D t} & =\ddot{\mathbf{r}}+\nabla\left(\frac{1}{2} \dot{\mathbf{r}}^{2}\right)-\dot{\mathbf{r}} \times(\nabla \times \dot{\mathbf{r}}) \\
& =\ddot{\mathbf{r}}+(\nabla \times \dot{\mathbf{r}}) \times \dot{\mathbf{r}}+\nabla\left(\frac{1}{2} \dot{\mathbf{r}}^{2}\right) .
\end{aligned}
$$

(86)
(87)

The curl in the above expression gives

$$
\nabla \times \dot{\mathbf{r}}=\frac{1}{r} \frac{\partial}{\partial r}\left(r^{2} \dot{\theta}\right) \hat{\mathbf{z}}
$$

(88)

$$
=2 \dot{\theta} \hat{\mathbf{z}}_{n}
$$

(89)
so

$$
\begin{aligned}
-\dot{\mathbf{r}} \times(\nabla \times \dot{\mathbf{r}}) & =-2 \dot{\theta}(\dot{r} \hat{\mathbf{r}} \times \hat{\mathbf{z}}+r \dot{\theta} \hat{\boldsymbol{\theta}} \times \hat{\mathbf{z}}) \\
& =-2 \dot{\theta}(-\dot{r} \hat{\boldsymbol{\theta}}+r \dot{\theta} \hat{\mathbf{r}}) \\
& =2 \dot{r} \dot{\theta} \hat{\theta}-2 r \dot{\theta}^{2} \hat{\mathbf{r}}
\end{aligned}
$$

We expect the gradient term to vanish since speed does not depend on position. Check this using the identity $\nabla\left(f^{2}\right)=2 f \nabla f$,

$$
\begin{aligned}
\nabla\left(\frac{1}{2} \dot{\mathbf{r}}^{2}\right) & =\frac{1}{2} \nabla\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}+\dot{z}^{2}\right) \\
& =\dot{r} \nabla \dot{r}+r \dot{\theta} \nabla(r \dot{\theta})+\dot{z} \nabla \dot{z}
\end{aligned}
$$

Examining this term by term,

$$
\dot{r} \nabla \dot{r}=\dot{r} \frac{\partial}{\partial t} \nabla r
$$

$$
=i \frac{\partial}{\partial t} \hat{\mathbf{r}}
$$

$$
=i \dot{\hat{\mathbf{r}}}
$$

$$
=\dot{r} \dot{\theta} \hat{\theta}
$$

(98)

$$
r \dot{\theta} \nabla(r \dot{\theta})=r \dot{\theta}\left[r \frac{\partial}{\partial t} \nabla \theta+\dot{\theta} \nabla r\right]
$$

$$
=r \dot{\theta}\left[r \frac{\partial}{\partial r}\left(\frac{1}{r} \hat{\theta}\right)+\dot{\theta} \hat{\mathbf{r}}\right]
$$

(100)

$$
\begin{equation*}
=r \dot{\theta}\left[r\left(-\frac{1}{r^{2}} \dot{r} \hat{\boldsymbol{\theta}}+\frac{1}{r} \dot{\hat{\boldsymbol{\theta}}}\right)+\dot{\theta} \hat{\mathbf{r}}\right] \tag{101}
\end{equation*}
$$

$$
\begin{aligned}
& =-\dot{\theta} \dot{r} \hat{\boldsymbol{\theta}}+r \dot{\theta}(-\dot{\theta} \hat{\mathbf{r}})+r \dot{\theta}^{2} \hat{\mathbf{r}} \\
& =-\dot{\theta} \dot{r} \hat{\boldsymbol{\theta}} \\
\dot{z} \nabla \dot{z} & =\dot{z} \frac{\partial}{\partial t} \nabla z \\
& =\dot{z} \frac{\partial}{\partial t} \hat{\mathbf{z}} \\
& =之 \dot{\hat{\mathbf{z}}}
\end{aligned}
$$

$$
=\mathbf{0}
$$

so, as expected,

$$
\nabla\left(\frac{1}{2} \dot{r}^{2}\right)=\mathbf{0} .
$$

(108)

We have already computed $\overrightarrow{\mathbf{r}}$, so combining all three pieces gives

$$
\begin{aligned}
\frac{D \dot{\mathbf{r}}}{D t} & =\left(\ddot{r}-r \dot{\theta}^{2}-2 r \dot{\theta}^{2}\right) \hat{\mathbf{r}}+(2 \dot{r} \dot{\theta}+2 \dot{r} \dot{\theta}+r \ddot{\theta}) \hat{\boldsymbol{\theta}}+\ddot{z} \hat{\mathbf{z}} \\
& =\left(\ddot{r}-3 r \dot{\theta}^{2}\right) \hat{\mathbf{r}}+(4 \dot{r} \dot{\theta}+r \ddot{\theta}) \hat{\boldsymbol{\theta}}+\ddot{z} \hat{\mathbf{Z}} .
\end{aligned}
$$

The divergence is

$$
\begin{aligned}
\nabla \cdot A & =A_{r}^{r}=A_{z}^{r}+\left(\Gamma_{r r}^{r} A^{r}+\Gamma_{\theta r}^{r} A^{\theta}+\Gamma_{z r}^{r} A^{z}\right)+A_{\theta \theta}^{\theta}+\left(\Gamma_{r \theta}^{\theta} A^{r}+\Gamma_{\infty \not r}^{\theta} A^{\theta}+\Gamma_{z \theta}^{\theta} A^{z}\right)+A_{z}^{z}+\left(\Gamma_{r z}^{z} A^{r}+\Gamma_{\theta_{z}}^{c} A^{\theta}+\Gamma_{z z}^{z} A^{z}\right)(112) \\
& =A_{z}^{r}+A_{\theta}^{\theta}+A_{z}^{z}+(0+0+0)+\left(\frac{1}{r}+0+0\right)+(0+0+0) \\
& =\frac{1}{g_{r}} \frac{\partial}{\partial r} A^{r}+\frac{1}{g_{\theta}} \frac{\partial}{\partial \theta} A^{\theta}+\frac{1}{g_{z}} \frac{\partial}{\partial z} A^{z}+\frac{1}{r} A^{r} \\
& =\left(\frac{\partial}{\partial r}+\frac{1}{r}\right) A^{r}+\frac{1}{r} \frac{\partial}{\partial \theta} A^{\theta}+\frac{\partial}{\partial z} A^{z} .
\end{aligned}
$$

or, in vector notation

$$
\nabla \cdot \mathbf{F}=\frac{1}{r} \frac{\partial}{\partial r}\left(r F_{r}\right)+\frac{1}{r} \frac{\partial F_{\theta}}{\partial \theta}+\frac{\partial F_{z}}{\partial z} .
$$

The curl is

$$
\begin{equation*}
\nabla \times \mathbf{F}=\left(\frac{1}{r} \frac{\partial F_{z}}{\partial \theta}-\frac{\partial F_{\theta}}{\partial z}\right) \hat{\mathbf{r}}+\left(\frac{\partial F_{r}}{\partial z}-\frac{\partial F_{z}}{\partial r}\right) \hat{\theta}+\frac{1}{r}\left[\frac{\partial}{\partial r}\left(r F_{\theta}\right)-\frac{\partial F_{r}}{\partial \theta}\right] \hat{\mathbf{z}} \tag{117}
\end{equation*}
$$

The scalar Laplacian is

$$
\begin{align*}
\nabla^{2} f & =\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial f}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} f}{\partial \theta^{2}}+\frac{\partial^{2} f}{\partial z^{2}} \tag{118}\\
& =\frac{\partial^{2} f}{\partial r^{2}}+\frac{1}{r} \frac{\partial f}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} f}{\partial \theta^{2}}+\frac{\partial^{2} f}{\partial z^{2}}
\end{align*}
$$

The vector Laplacian is

$$
\nabla^{2} \mathbf{v}=\left[\begin{array}{c}
\frac{\partial^{2} v_{r}}{\partial \sigma^{2}}+\frac{1}{r^{2}} \frac{\partial^{2} v_{r}}{\partial \sigma^{2}}+\frac{\partial^{2} v_{r}}{\partial c^{2}}+\frac{1}{r} \frac{\partial v_{r}}{\partial r}-\frac{2}{r^{2}} \frac{\partial v_{\theta}}{\partial \theta}-\frac{v_{r}}{r^{2}} \tag{120}\\
\frac{\partial^{2} v_{\theta}}{\partial r^{2}}+\frac{1}{r^{2}} \frac{\partial^{2} v_{\theta}}{\partial \sigma^{2}}+\frac{\partial^{2} v_{\theta}}{\partial c^{2}}+\frac{1}{r} \frac{\partial v_{\theta}}{\partial r}+\frac{2}{r^{2}} \frac{\partial v_{r}}{\partial \theta}-\frac{v_{\theta}}{r^{2}} \\
\frac{\partial^{2} v_{z}}{\partial \sigma^{2}}+\frac{1}{r^{2}} \frac{\partial^{2} v_{z}}{\partial \sigma^{2}}+\frac{\partial^{2} v_{z}}{\partial c^{2}}+\frac{1}{r} \frac{\partial v_{z}}{\partial r}
\end{array}\right] .
$$

[^0]
REFERENCES:

Arken, G. "Circular Cylindrical Coordinates." §2.4 in Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press, pp. 95-101, 1985.
Beyer, W. H. CRC Standard Mathematical Tables, 28th ed. Boca Raton, FL: CRC Press, 1987.
Korn, G. A. and Korn, T. M. Mathematical Handbook for Scientists and Engineers. New York: McGraw-Hill, 1968
Misner, C. W.; Thorne, K. S.; and Wheeler, J. A. Gravitation. San Francisco: W. H. Freeman, 1973.
Moon, P. and Spencer, D. E. "Circular-Cylinder Coordinates (r, ψ, z)" Table 1.02 in Field Theory Handbook, Including Coordinate Systems, Differential Equations, and Their Solutions, 2nd ed. New York: Springer-Verlag, pp. 12-17, 1988.

Morse, P. M. and Feshbach, H. Methods of Theoretical Physics, Part l. New York: McGraw-Hill, p. 657, 1953.
Walton, J. J. "Tensor Calculations on Computer: Appendix." Comm. ACM 10, 183-186, 1967

CITE THIS AS:
Weisstein, Eric W. "Cylindrical Coordinates." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/CylindricalCoordinates.html

[^0]: The Helmholtz differential equation is separable in cylindrical coordinates and has Stäckel determinant $S=1$ (for $r, \boldsymbol{\theta}, \geq$) or $S=1 /\left(1-\xi_{2}^{2}\right)$ (for Morse and Feshbach's ξ_{1}, ξ_{2}, and $\left.\xi_{3}\right)$.

 SEE ALSO: Cartesian Coordinates, Elliptic Cylindrical Coordinates, Helmholtz Differential Equation--Circular Cylindrical Coordinates, Polar Coordinates, Spherical Coordinates

