Cylindrical Coordinates in the

Wolfram

Other Wolfram Web Resources »

WOLFRAM H DEMONSTRATIONS PRO

Cylindrical Coordinates

Exploring Cylindrical Coordinates

Mathematica

LEARN MO

SEARCH MATHWORLD GO

Agebra Appied Mathematics Calculus and Analysis Discrete Mathematics Foundations of Mathematics Geometry History and Terminology Number Theory Probability and Statistics Recreational Mathematics Topology

Alphabetical Index Interactive Entries Random Entry New in *MathWorld*

MathWorld Classroom About MathWorld

Contribute to MathWorld Send a Message to the Team

MathWorld Book

12,976 entries Last updated: Sun Jan 17 2010

Created, developed, and nurtured by Eric Weisstein at Wolfram Research Geometry > Coordinate Geometry > Interactive Entries > Interactive Demonstrations >

Cylindrical Coordinates

DOWNLOAD Mathematica Notebool

Cylindrical coordinates are a generalization of two-dimensional polar coordinates to three dimensions by superposing a height (z) axis. Unfortunately, there are a number of different notations used for the other two coordinates. Either r or ρ is used to refer to the radial coordinate and either ϕ or θ to the azimuthal coordinates. Arfken (1985), for instance, uses (ρ , ϕ , z) while Beyer (1987) uses (r, θ , z) In this work, the notation (r, θ , z) is used.

The following table summarizes notational conventions used by a number of authors.

(radial, azimuthal, vertical) reference
(r, θ, z)	this work, Beyer (1987, p. 212)
(Rr, Ttheta, Zz)	SetCoordinates[Cylindrical] in the Mathematica package VectorAnalysis`)
(ρ, ϕ, z)	Arfken (1985, p. 95)
(r, ψ, z)	Moon and Spencer (1988, p. 12)
(r', φ, z)	Korn and Korn (1968, p. 60)
(ξ_1, ξ_2, ξ_3)	Morse and Feshbach (1953)

In terms of the Cartesian coordinates (x, y, z),

<i>r</i>	$=\sqrt{x^2+y^2}$	(1)
6	$=\tan^{-1}\left(\frac{y}{x}\right)$	(2)
z	=z,	(3)
where $r \in [$ into account	$[0, \infty)$, $\theta \in [0, 2\pi]$, $z \in (-\infty, \infty)$, and the inverse tangent must be suitably defined to take the correct quadrant of (x, y) .	y)

In terms of x, y, and z

$x = r \cos \theta$	(4)
$y = r \sin \theta$	(5)
z=z.	(6)
Note that Morse and Feshbach (1953) define the cylindrical coordinates by	
$x = \xi_1 \xi_2$	(7)
$y = \xi_1 \sqrt{1 - \xi_2^2}$	(8)
$z = \xi_3$,	(9)
where $\xi_1 = r$ and $\xi_2 = \cos \theta$.	
The metric elements of the cylindrical coordinates are	
$g_{rr} = 1$	(10)
$g_{\theta\theta} = r^2$	(11)
$g_{zz} = 1$,	(12)
so the scale factors are	
$g_r = 1$	(13)
$g_{\beta} = r$	(14)
$g_z = 1$.	(15)
The line element is	
$d\mathbf{s} = dr\hat{\mathbf{r}} + rd\theta\hat{\boldsymbol{\theta}} + dz\hat{\mathbf{z}},$	(16)
and the volume element is	
$dV = r dr d\theta dz.$	(17)
The Jacobian is	

$\left \frac{\partial(x, y, z)}{\partial(r, \theta, z)}\right = r.$	(18)
A Cartesian vector is given in cylindrical coordinates by	
$r = \begin{bmatrix} r \cos \theta \\ r \sin \theta \end{bmatrix}$	
$\Gamma = \begin{bmatrix} r \sin \theta \\ z \end{bmatrix}$.	(19)
To find the unit vectors,	
$a = \frac{dr}{dr} = \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix}$	(22)
$\mathbf{r} = \begin{bmatrix} \frac{d\mathbf{r}}{d\mathbf{r}} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 \end{bmatrix}$	(20)
$\hat{\boldsymbol{\mu}} \equiv \frac{\frac{d\boldsymbol{r}}{d\theta}}{\frac{d\theta}{d\theta}} = \begin{bmatrix} -\sin\theta\\ \cos\theta \end{bmatrix}$	(21)
$\left \frac{dr}{dr}\right = \begin{bmatrix} 0 \end{bmatrix}$	(=-)
$\hat{\mathbf{z}} \equiv \frac{\frac{d}{d_c}}{\frac{1}{d_c}} = \begin{bmatrix} 0\\0 \end{bmatrix}.$	(22)
$\left \frac{d}{dz}\right $ [1]	
Derivatives of unit vectors with respect to the coordinates are	
$\frac{\partial \hat{r}}{\partial r} = 0$	(23)
$\frac{\partial \hat{\mathbf{r}}}{\partial \theta} = \hat{\boldsymbol{\theta}}$	(24)
$\frac{\partial \hat{\mathbf{r}}}{\partial \mathbf{r}} = 0$	(25)
∂z $\partial \hat{\theta}$.	(23)
$\frac{\partial r}{\partial r} = 0$	(26)
$rac{\partial ar{ heta}}{\partial heta} = -\hat{\mathbf{r}}$	(27)
$\frac{\partial \hat{\theta}}{\partial t} = 0$	(28)
$\frac{\partial z}{\partial \hat{z}} = 0$	(20)
$\frac{\partial}{\partial r}$	(29)
$\frac{\partial \theta}{\partial \theta} = 0$	(30)
$\frac{\partial z}{\partial z} = 0.$	(31)
The gradient operator in cylindrical coordinates is given by	
$\nabla \equiv \hat{\mathbf{r}} \frac{\partial}{\partial r} + \hat{\boldsymbol{\theta}} \frac{1}{r} \frac{\partial}{\partial \theta} + \hat{\mathbf{z}} \frac{\partial}{\partial z},$	(32)
so the gradient components become	
∇ , $\hat{\mathbf{r}} = 0$	(33)
$\nabla_{\theta} \hat{\mathbf{r}} = \frac{1}{r} \hat{\boldsymbol{\theta}}$	(34)
$\nabla_{\mathbf{r}} \hat{\mathbf{r}} = 0$	(35)
$\nabla_{\mathbf{r}} \hat{\mathbf{\theta}} = -\frac{1}{\mathbf{r}} \hat{\mathbf{r}}$	(36)
$\nabla_{\mathbf{r}} \hat{\boldsymbol{\theta}} = 0$	(38)
$\nabla, \hat{z} = 0$	(39)
$\nabla_{\theta} \hat{z} = 0$ $\nabla_{\theta} \hat{z} = 0$.	(40)
The Christoffel symbols of the second kind in the definition of Misner <i>et al.</i> (1973, p. 209) are given by	(41)
$\Gamma^{r} = \begin{bmatrix} 0 & -\frac{1}{r} & 0 \end{bmatrix}$	(42)
$\begin{bmatrix} 0 & \frac{1}{r} & 0 \end{bmatrix}$	
	(43)
$\Gamma^{v} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$.	(44)
The Christoffel symbols of the second kind in the definition of Arfken (1985) are given by	
0 0 0	
$\Gamma^{r} = \begin{bmatrix} 0 & -r & 0 \\ 0 & 0 & 0 \end{bmatrix}$	(45)

$\begin{bmatrix} 0 & \frac{1}{2} & 0 \end{bmatrix}$	
$\Gamma^{a} = \begin{vmatrix} r & r \\ 1 & 0 & 0 \end{vmatrix}$	(46)
$\Gamma^{c} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	(47)
(Walton 1967; Arfken 1985, p. 164, Ex. 3.8.10; Moon and Spencer 1988, p. 12a).	
The covariant derivatives are then given by	
$A_{ij} = \frac{1}{2} \frac{\partial A_j}{\partial x_j} - \Gamma^i_{ij} A_i$	(49)
$M_{jk} = \frac{g^{kk}}{g^{kk}} \frac{\partial x_k}{\partial x_k} + \frac{1}{jk} \frac{\partial x_k}{\partial x_k},$	(48)
are	
$A_{r;r} = \frac{\partial A_r}{\partial r}$	(49)
$A_{r;\theta} = \frac{1}{r} \frac{\partial A_r}{\partial \theta} - \frac{A_{\theta}}{r}$	(50)
$A_{\mu\nu} = \frac{\partial A_{\mu}}{\partial A_{\mu}}$	(51)
∂z ∂A_{θ}	(01)
$\Lambda_{\theta r} = \frac{1}{\partial r}$	(52)
$A_{\theta,\theta} = \frac{1}{r} \frac{\partial \phi_{\theta}}{\partial \theta} + \frac{\partial r}{r}$	(53)
$A_{\theta,z} = \frac{\partial A_{\theta}}{\partial z}$	(54)
$A_{zp} = \frac{\partial A_z}{\partial r}$	(55)
$A_{z;\theta} = \frac{1}{2} \frac{\partial A_z}{\partial z}$	(56)
$r \partial \theta$ $A = \frac{\partial A_z}{\partial A_z}$	(88)
$\Lambda_{zz} = \frac{\partial z}{\partial z}$.	(57)
Cross products of the coordinate axes are	
$\hat{\mathbf{r}} \times \hat{\mathbf{z}} = -\hat{\boldsymbol{\theta}}$ $\hat{\boldsymbol{\theta}} = \hat{\mathbf{r}}$	(58)
$\hat{\mathbf{r}} \times \hat{\mathbf{z}} = \hat{\mathbf{r}}$	(60)
The commutation coefficients are given by	
$c^{\mu}_{\alpha\beta} ec{e}_{\mu} = \left[ec{e}_{lpha}, ec{e}_{eta} ight] = abla_{lpha} ec{e}_{eta} - abla_{eta} ec{e}_{lpha},$	(61)
But	
$[\hat{\mathbf{r}},\hat{\mathbf{r}}]=[\hat{ heta},\hat{ heta}]=[\hat{\phi},\hat{\phi}]=0,$	(62)
so $c^a_{rr}=c^a_{\theta\theta}=c^a_{d\phi}=0,$ where $lpha=r, heta,\phi.$ Also	
$[\hat{\mathbf{r}}, \hat{\theta}] = -[\hat{\theta}, \hat{\mathbf{r}}] = \nabla_x \hat{\theta} - \nabla_{\theta} \hat{\mathbf{r}} = 0 - \frac{1}{\hat{\theta}} = -\frac{1}{\hat{\theta}},$	(63)
	()
so $c_{r\theta} = -c_{\theta r} = -\frac{1}{r}$, $c_{r\theta}' = c_{r\theta}' = 0$. Finally,	
$[\hat{\mathbf{r}}, \boldsymbol{\phi}] = [\boldsymbol{\theta}, \boldsymbol{\phi}] = 0.$	(64)
Summarizing,	
$c'' = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	(65)
$\left[\begin{array}{c} 0 & -\frac{1}{r} & 0 \\ 0 & -\frac{1}{r} & 0 \end{array} \right]$	
$c^{\theta} = \begin{vmatrix} 1 \\ r \end{vmatrix} = 0 = 0$	(66)
$e^{\phi} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$.	(67)
[0 0 0]	
Time derivatives of the vector are	
$\dot{\mathbf{r}} = \begin{vmatrix} \cos\theta \dot{\mathbf{r}} - \mathbf{r} \sin\theta \dot{\theta} \\ \sin\theta \dot{\mathbf{r}} + \mathbf{r} \cos\theta \dot{\theta} \end{vmatrix} = \dot{\mathbf{r}} \hat{\mathbf{r}} + \mathbf{r} \dot{\theta} \hat{\theta} + \dot{z} \hat{\mathbf{z}}$	(60)
$\left[\frac{\sin \sigma r r \cos \sigma \sigma}{2} \right]^{-1}$	(68)
$-\sin\theta \dot{r}\dot{\theta} + \cos\theta \ddot{r} - \sin\theta \dot{r}\dot{\theta} - r\cos\theta \dot{\theta}^2 - r\sin\theta \ddot{\theta}$	
$\vec{\mathbf{r}} = \begin{vmatrix} \cos\theta \dot{r} \dot{\theta} + \sin\theta \ddot{r} + \cos\theta \dot{r} \dot{\theta} - r \sin\theta \dot{\theta}^2 + r \cos\theta \dot{\theta} \\ \ddot{r} \end{vmatrix}$	(69)
i * 1	

	(70)
$= 2 \sin \theta \dot{r} \theta + \cos \theta \ddot{r} - r \cos \theta \dot{\theta}^2 - r \sin \theta \dot{\theta}$ $= 2 \cos \theta \dot{r} \dot{\theta} + \sin \theta \ddot{r} - r \sin \theta \dot{\theta}^2 + r \cos \theta \ddot{\theta}$	(71)
	(71)
$= \left(\ddot{r} - r\dot{\theta}^2\right)\hat{\mathbf{r}} + \left(2\dot{r}\dot{\theta} + r\ddot{\theta}\right)\hat{\boldsymbol{\theta}} + \ddot{z}\hat{\boldsymbol{z}}.$	(72)
Speed is given by	
v ≡ ř	(73)
$= \sqrt{\dot{r}^2 + r^2} \dot{\theta}^2 + \dot{z}^2 .$	(74)
Time derivatives of the unit vectors are	
$-\sin\theta\dot{\theta}$	
$\hat{\mathbf{r}} = \begin{bmatrix} \cos \theta \dot{\theta} \\ 0 \end{bmatrix}$	(75)
$=\dot{\theta}\hat{\theta}$	(76)
$-\cos\theta\dot{\theta}$	
$\hat{\boldsymbol{\theta}} = \begin{vmatrix} -\sin\theta \theta \\ 0 \end{vmatrix}$	(77)
$=-\dot{\theta}\hat{\mathbf{r}}$	(78)
$\mathbf{z} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$	(79)
=0.	(80)
The convective derivative is	
$\frac{D\dot{\mathbf{r}}}{Dt} = \left(\frac{\partial}{\partial t} + \dot{\mathbf{r}} \cdot \nabla\right)\dot{\mathbf{r}}$	(81)
$=\frac{\partial \dot{\mathbf{r}}}{\partial t} + \dot{\mathbf{r}} \cdot \nabla \dot{\mathbf{r}}$	(82)
$-\frac{\partial}{\partial t}$ + $-\frac{\partial}{\partial t}$	(62)
To rewrite this, use the identity	
$\nabla(\mathbf{A} \cdot \mathbf{B}) = \mathbf{A} \times (\nabla \times \mathbf{B}) + \mathbf{B} \times (\nabla \times \mathbf{A}) + (\mathbf{A} \cdot \nabla) \mathbf{B} + (\mathbf{B} \cdot \nabla) \mathbf{A}$	(83)
and set $\mathbf{A} = \mathbf{B}$ to obtain $\nabla(\mathbf{A}, \mathbf{A}) = 2 \mathbf{A} \vee (\nabla \times \mathbf{A}) + 2 (\mathbf{A}, \nabla) \mathbf{A}$	
$\mathbf{v}(\mathbf{A}\cdot\mathbf{A}) = 2\mathbf{A} \times (\mathbf{v} \times \mathbf{A}) + 2(\mathbf{A}\cdot\mathbf{v})\mathbf{A},$	(84)
so $(\mathbf{A}, \nabla) \mathbf{A} = \nabla (\frac{1}{2} \mathbf{A}^2) = \mathbf{A} \times (\nabla \times \mathbf{A})$	(25)
$(\mathbf{A} \cdot \mathbf{v})\mathbf{A} = \mathbf{v}(\frac{1}{2}\mathbf{A}) - \mathbf{A} \wedge (\mathbf{v} \wedge \mathbf{A}).$	(85)
Then	
$\frac{D\mathbf{r}}{Dt} = \mathbf{\ddot{r}} + \nabla(\frac{1}{2}\mathbf{r}^2) - \mathbf{\dot{r}} \times (\nabla \times \mathbf{\dot{r}})$	(86)
$= \ddot{\mathbf{r}} + (\nabla \times \dot{\mathbf{r}}) \times \dot{\mathbf{r}} + \nabla (\frac{1}{2} \dot{\mathbf{r}}^2).$	(87)
The curl in the above expression gives	
$\nabla \times \dot{\mathbf{r}} = \frac{1}{2} \frac{\partial}{\partial z} (r^2 \dot{\theta}) \hat{\mathbf{z}}$	(88)
$=2\dot{\theta}\dot{z}$	(89)
80	
$-\dot{\mathbf{r}} \times (\nabla \times \dot{\mathbf{r}}) = -2 \dot{\theta} \left(\dot{r} \hat{\mathbf{r}} \times \hat{\mathbf{z}} + r \dot{\theta} \hat{\theta} \times \hat{\mathbf{z}} \right)$	(90)
$= -2 \theta \left(-\dot{r} \hat{\theta} + r \theta \hat{\mathbf{r}} \right)$	(91)
$= 2\dot{r}\dot{\theta}\hat{\theta} - 2r\dot{\theta}^{2}\hat{\mathbf{r}}.$	(92)
We expect the gradient term to vanish since speed does not depend on position. Check this using the identity $ abla(f^2)$	$= 2 f \nabla f$
$\nabla\left(\frac{1}{2}\dot{\mathbf{r}}^2\right) = \frac{1}{2}\nabla\left(\dot{r}^2 + r^2\dot{\theta}^2 + \dot{z}^2\right)$	(93)
$= \dot{r} \nabla \dot{r} + r \dot{\theta} \nabla (r \dot{\theta}) + \dot{z} \nabla \dot{z} .$	(94)
Examining this term by term,	
$\dot{r} \nabla \dot{r} = \dot{r} \frac{\partial}{\partial r} \nabla r$	(95)
$\frac{\partial t}{\partial t}$	()
$=r\frac{1}{\partial r}r$	(96)
$=_{\vec{r}} \vec{r}$ $=_{\vec{r}} \hat{\theta} \hat{\theta}$	(97)
$r\dot{\theta}\nabla(r\dot{\theta}) = r\dot{\theta}\left[r\frac{\partial}{\partial}\nabla\theta + \dot{\theta}\nabla r\right]$	(99)
$\begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} a \\ b \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix}$	(55)
$=r\theta \left[r\frac{\partial}{\partial t}\left(-r\theta\right)+\theta \mathbf{r}\right]$	(100)

$$= r \hat{\theta} \left[r \left(-\frac{1}{r^2} \dot{r} \hat{\theta} + \frac{1}{r} \dot{\theta} \right) + \hat{\theta} \hat{\mathbf{r}} \right]$$
(101)

$= -\dot{\theta}\dot{r}\hat{\theta} + r\dot{\theta}\left(-\dot{\theta}\hat{\mathbf{r}}\right) + r\dot{\theta}^{2}\hat{\mathbf{r}}$	(102)
$=-\dot{ heta}\dot{ heta}$	(103)
$\dot{z} \nabla \dot{z} = \dot{z} \frac{\partial}{\partial t} \nabla z$	(104)
$-\frac{1}{2}\frac{\partial}{\partial t}\hat{x}$	(105)
$-z \frac{\partial t}{\partial t}$	(105)
$= \frac{1}{2} \hat{z}$ = 0.	(106)
so as expected	(107)
$\frac{\nabla^{(1+2)} - 0}{\nabla^{(1+2)} - 0}$	
$\mathbf{v}\left(\frac{1}{2}\mathbf{r}\right) = 0.$	(108)
We have already computed $\vec{r},$ so combining all three pieces gives	
$\frac{D\dot{\mathbf{r}}}{Dt} = \left(\ddot{r} - r\dot{\theta}^2 - 2r\dot{\theta}^2\right)\hat{\mathbf{r}} + \left(2\dot{r}\dot{\theta} + 2\dot{r}\dot{\theta} + r\ddot{\theta}\right)\hat{\boldsymbol{\theta}} + \ddot{z}\hat{\mathbf{z}}$	(109)
	(110)
$= \left(\ddot{r} - 3 r \dot{\theta}^2\right) \hat{\mathbf{r}} + \left(4 \dot{r} \dot{\theta} + r \ddot{\theta}\right) \hat{\boldsymbol{\theta}} + \ddot{z} \hat{\boldsymbol{z}}.$	(111)
The divergence is	
$\nabla \cdot A = A'_{-} = A'_{-} + \left(\Gamma'_{-}, A' + \Gamma'_{-}, A^{\theta} + \Gamma'_{-}, A^{z}\right) + A^{\theta}_{-} + \left(\Gamma^{\theta}_{-}, A' + \Gamma^{\theta}_{-}, A^{\theta} + \Gamma^{\theta}_{-}, A^{z}\right) + A^{z}_{-} + \left(\Gamma^{z}_{-}, A' + \Gamma^{z}_{-}, A^{\theta} + \Gamma^{\theta}_{-}, A^{z}\right)$	5. A ² (112)
$=A_{-}^{r} + A_{+}^{\theta} + A_{-}^{z} + (0 + 0 + 0) + (\frac{1}{2} + 0 + 0) + (0 + 0 + 0)$	(113)
$1 \frac{\partial}{\partial r} = 1 \frac{\partial}{\partial r} = 1 \frac{\partial}{\partial r} = 1$	(113)
$= \frac{1}{g_r} \frac{\partial}{\partial r} A^r + \frac{\partial}{g_\theta} \frac{\partial}{\partial \theta} A^\theta + \frac{\partial}{g_z} \frac{\partial}{\partial z} A^z + \frac{\partial}{r} A^r$	(114)
$= \left\{ \frac{\partial}{\partial r} + \frac{1}{r} \right\} A^r + \frac{1}{r} \frac{\partial}{\partial \theta} A^{\theta} + \frac{\partial}{\partial z} A^z.$	(115)
er in væder netetion	
$\nabla \cdot \mathbf{F} = \frac{1}{r} \frac{\partial}{\partial r} (rF_r) + \frac{1}{r} \frac{\partial F_\theta}{\partial \theta} + \frac{\partial F_z}{\partial z}.$	(116)
The curl is	
$\nabla \mathbf{x} \mathbf{F} = \left(\frac{1}{2} \frac{\partial F_z}{\partial F_z} - \frac{\partial F_\theta}{\partial F_z}\right) \hat{\mathbf{r}} + \left(\frac{\partial F_z}{\partial F_z} - \frac{\partial F_z}{\partial F_z}\right) \hat{\boldsymbol{\theta}} + \frac{1}{2} \left[\frac{\partial}{\partial F_z} (F_\theta) - \frac{\partial F_z}{\partial F_z}\right] \hat{\boldsymbol{x}}.$	(117)
$(r \ \partial \theta \ \partial z)^{-1} (\partial z \ \partial r)^{-1} r [\partial r^{(1-1)} \partial \theta]^{-1}$	(117)
The scalar Laplacian is	
$\nabla^2 f = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial f}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 f}{\partial \theta^2} + \frac{\partial^2 f}{\partial r^2}$	(118)
$\partial^2 f$ 1 ∂f 1 $\partial^2 f$ $\partial^2 f$	
$= \frac{1}{\partial r^2} + \frac{1}{r} \frac{1}{\partial r} + \frac{1}{r^2} \frac{1}{\partial \theta^2} + \frac{1}{\partial z^2}.$	(119)
The vector Laplacian is	
$\left[\frac{\partial^2 v_r}{\partial r^2} + \frac{1}{r^2} \frac{\partial^2 v_r}{\partial \theta^2} + \frac{\partial^2 v_r}{\partial r^2} + \frac{1}{r} \frac{\partial v_r}{\partial r} - \frac{2}{r^2} \frac{\partial v_\theta}{\partial \theta} - \frac{v_r}{r^2}\right]$	
$\nabla^2 \mathbf{v} = \begin{bmatrix} \frac{\partial^2 v_{\theta}}{\partial 2} + \frac{1}{2} & \frac{\partial^2 v_{\theta}}{\partial 2} + \frac{\partial^2 v_{\theta}}{\partial 2} + \frac{1}{2} & \frac{\partial v_{\theta}}{\partial 2} + \frac{1}{2} & \frac{\partial v_{\theta}}{\partial 2} + \frac{2}{2} & \frac{\partial v_{\theta}}{\partial 2} - \frac{v_{\theta}}{2} \end{bmatrix}.$	(120)
$\frac{\partial r^{*}}{\partial r} \frac{r^{*}}{\partial r} \frac{\partial r^{*}}{\partial r} \frac{\partial r^{*}}{\partial r} \frac{r^{*}}{r^{*}} \frac{\partial r}{\partial r} \frac{r^{*}}{r^{*}}$ $\frac{\partial^{2} v_{z}}{\partial r} + \frac{1}{2} \frac{\partial^{2} v_{z}}{\partial r} + \frac{\partial^{2} v_{z}}{r^{*}} + \frac{1}{2} \frac{\partial v_{z}}{\partial r}$	(
$\partial r^2 + r^2 \partial \theta^2 + \partial z^2 + r \partial r$	

The Helmholtz differential equation is separable in cylindrical coordinates and has Stäckel determinant S = 1 (for r, θ, z) or $S = 1/(1 - \xi_2^2)$ (for Morse and Feshbach's ξ_1, ξ_2 , and ξ_3).

SEE ALSO: Cartesian Coordinates, Elliptic Cylindrical Coordinates, Helmholtz Differential Equation---Circular Cylindrical Coordinates, Polar Coordinates, Spherical Coordinates

REFERENCES:

Arfken, G. "Circular Cylindrical Coordinates." §2.4 in Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press, pp. 95-101, 1985.

Beyer, W. H. CRC Standard Mathematical Tables, 28th ed. Boca Raton, FL: CRC Press, 1987.

Korn, G. A. and Korn, T. M. Mathematical Handbook for Scientists and Engineers, New York: McGraw-Hill, 1968.

Misner, C. W.; Thorne, K. S.; and Wheeler, J. A. Gravitation. San Francisco: W. H. Freeman, 1973.

Moon, P. and Spencer, D. E. "Circular-Cylinder Coordinates (r, ψ, z)" Table 1.02 in Field Theory Handbook, Including Coordinate Systems, Differential Equations, and Their Solutions, 2nd ed. New York: Springer-Verlag, pp. 12-17, 1988.

Morse, P. M. and Feshbach, H. Methods of Theoretical Physics, Part I. New York: McGraw-Hill, p. 657, 1953.

Walton, J. J. "Tensor Calculations on Computer: Appendix." Comm. ACM 10, 183-186, 1967.

CITE THIS AS:

Weisstein, Eric W, "Cvlindrical Coordinates," From MathWorld--A Wolfram Web Resource, http://mathworld.wolfram.com/CvlindricalCoordinates.html

Contact the MathWorld Team © 1999-2010 Wolfram Research, Inc. | Terms of Use